6x^2-672=x^2+32(979)

Simple and best practice solution for 6x^2-672=x^2+32(979) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2-672=x^2+32(979) equation:



6x^2-672=x^2+32(979)
We move all terms to the left:
6x^2-672-(x^2+32(979))=0
We get rid of parentheses
6x^2-x^2-32979-672=0
We add all the numbers together, and all the variables
5x^2-33651=0
a = 5; b = 0; c = -33651;
Δ = b2-4ac
Δ = 02-4·5·(-33651)
Δ = 673020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{673020}=\sqrt{36*18695}=\sqrt{36}*\sqrt{18695}=6\sqrt{18695}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{18695}}{2*5}=\frac{0-6\sqrt{18695}}{10} =-\frac{6\sqrt{18695}}{10} =-\frac{3\sqrt{18695}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{18695}}{2*5}=\frac{0+6\sqrt{18695}}{10} =\frac{6\sqrt{18695}}{10} =\frac{3\sqrt{18695}}{5} $

See similar equations:

| x-100=-30 | | 5=–4y–7 | | x/33+x/9=42 | | -4(-4-6x)=2(2x+8) | | 9x-16=227 | | 3x-(8-x)=2x(5)-242 | | 6x*2-672=x*2+32(979) | | 3x–(x+12)=x–(4+2x) | | 3y-105=342 | | 52.25*8.4=x | | 52.25x8.4=x | | 5x+35=3160 | | Y=-(x-3)2+4 | | |p|=85,60° | | 2x-4-3x=31 | | R=(8+3x)(60–1x) | | x/7-8x/2+5/3=3 | | x/7-8x(2+5/3=3 | | -15+11x=6+8x | | (x)/(7)-(8x)/(2)+(5)/(3)=3 | | 4m^2-7m-35=-5 | | 2.80=7c-7(0.75) | | (x-3)(x^2+5x+1)=0 | | ((5000−x)5000)(36091)=0.35 | | 70-33y+2y²=0 | | 6z=46 | | q+19=20 | | F(x)=5x³+7x²-3x+2 | | 18=8+z | | 17=15+t | | q+17=29 | | 2x+13=4x−3 |

Equations solver categories